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1.0 INTRODUCTION

Most aircraft engine manufacturers have developed empirical distortion factors which
correlate engine stability degradation with the spatial variation of inlet recovery. Over
the years these factors have evolved from simple parameters based on steady-state pressures
to complicated formulations using instantaneous values of high-frequency bandwidth
dynamic pressures with sampling rates comparable to the engine rotation frequency. The
time-variant nature of inlet distortion has led to the use of a new descriptor, peak
instantaneous distortion (which is the maximum magnitude of any particular distortion
factor observed at a given test condition), and it is perhaps the major parameter for the
definition of inlet/engine compatibility. Inlet development tests have also used the peak
instantaneous distortion as a standard of comparison in various optimization cycles,
selecting the geometry or bleed rate which yielded the lower distortion without
compromising other performance criteria. However, as shown in Ref. 1, the peak
instantaneous distortion is an inconsistent indicator of inlet performance since the observed
magnitude is dependent on data acquisition time, and repeat test conditions can yield
significantly different results even if data acquisition time were held constant. These facts
are directly the result of distortion factors being random variables when calculated from
stationary dynamic pressure measurements (stationary meaning, for the present application,
that the average and root-mean-square are constant with respect to time). It is therefore
necessary that probabilistic analysis tools be utilized to interpret inlet distortion data and
thereby obtain a statistical prediction of the maximum distortion level for each test
condition.

The statistical analysis of Ref. 1 was based on Gumbel's (Ref. 2) first asymptotic
distribution of extremes which postulates an unlimited distortion magnitude. This
intuitively unacceptable requirement can be avoided by using a generalization of Gumbel's
third asymptote which postulates an unknown upper bound to the distortion magnitude.
Data from several inlet tests indicate that the generalized asymptote provides a better
probabilistic model of distortion peaks than the first asymptote.

This report presents examples of the application of Gumbel's asymptotic theory of
extremes to data acquired in several inlet tests and illustrates the general statistical
properties of various distortion factors. The distribution of extremes is characterized by
a three-parameter Weibull distribution. The parameters are estimated by the method of
maximum likelihood (Ref. 3, for example) using a modified Gauss-Newton iteration
technique (Ref. 4). The effects of data acquisition time, frequency bandwidth, and sampling
rate are discussed in context with Moore's similarity parameter, A, (Ref. S) to indicate
scalability of the dynamic inlet distortion data. The end result of these analyses is a
recommended procedure for the prediction of maximum time-variant inlet distortion levels
with error tolerance estimates to the desired degree of confidence.
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2.0 BACKGROUND
2.1 GENERAL DISCUSSION

Recent aircraft and engine development programs for high-performance vehicles have
pushed the problem of inlet/engine compatibility to the forefront of designer's concern.
Enlarged Mach number-altitude-attitude operating envelopes have resulted in a decrease
in the uniformity and an increase in the turbulence of the flow delivered to the engine
while engine operating lines have been raised to achieve maximum practicable thrust levels.
Working stall margins are minimal, and the major degradation of the surge line is allotted
to inlet distortion.

The inlet flow nonuniformity is usually expressed in terms of total-pressure distortion
because of measurement ease. Typically, eight rakes of total-pressure probes with five to
six probes per rake (see Fig. A-1) are used to measure the pressure profile of the inlet/engine
interface plane of low-bypass turbofan installations. Experience with the B-70 and F-111
programs (Refs. 6 and 7) has demonstrated that engines are sensitive to time-variant inlet
distortion with minimum response times comparable to the compressor rotation period.
Measurements of the engine face pressures are thus required with relatively high-frequency
bandwidths for full-scale testing and wider bandwidths (inversely proportional to scale)
for the sub-scale inlet development tests. Informal industry standards have evolved for
the measurement and acquisiton of these data, the miniature transducers being housed
in probes of the Hoeflinger-type (Ref. 8) and the data being recorded on 14-track analog
tapes in multiplexed constant-bandwidth FM mode. Data acquisition times are typically
equivalent to 2 to 3 minutes of full-scale inlet/fengine operation for stationary test
conditions.

Real-time analog processors have been developed (Refs. 5 and 9) to calculate the
various distortion factors (see Appendix A), screen the data, and locate the instant of
time at which the maximum distortion occurred. If the test condition is considered
sufficiently important, a short time segment of data containing the observed analog peak
distortion is then digitally processed to achieve greater accuracy than available from the
real-time processor and to obtain the engine-face pressure profile at the instant the peak
distortion occurred.

2.2 RANDOMNESS OF ENGINE-FACE PRESSURE PATTERNS

An example of a typical distortion index which has been calculated from the digitized,
time-varying engine-face total pressures for a two-dimensional inlet system is shown in
Fig. 1. Constant-pressure contour maps are also given for the time-averaged (steady-state)
data and for the instant of peak distortion wherein the lines represent the difference
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Figure 1. Representative digital instantaneous distortion results. .

between the local total pressure and the face average, normalized by the engine-face average
pressure. The time-variant distortion fluctuates randomly about an average distortion level
that is comparable to (but greater than*) the distortion calculated from steady-state
instrumentation. At some instant, the relative maximum distortion for this time interval
is noted, termed peak instantaneous distortion, and the associated engine-face pressure
pattern may or may not be similar in shape to the steady-state pattern. For a low-turbulence
inlet operating condition the pattern at the instantaneous peak distortion time is quite
similar to the steady-state pattern shape, differing only in intensity level. Medium
turbulence levels generally result in peak distortion patterns which vaguely resemble the
steady-state shape, whereas for high-turbulence conditions, the pressure patterns at instants
of peak distortion are quite dissimilar and agreement in shape with the steady-state pattern
is a rare occurrence,

*As a result of nonlinearities in all distortion factor formulations used for this report and the types of turbulence
encountered, the mean level of distortion was always squal to or greater than the level computed from the mean
pressures. As an example, imagine a turbulent flow field superimposed on a uniform (zero distortion) steady-state pressure
pattern, for this case the average time-variant distortion level would be positive and increase with increasing turbulence
levels.
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A visual appreciation for the randomness of the total-pressure fluctuations may be
gained from Fig. 2. This figure shows the end result of screening a long-time
segment (minutes) of inlet operation via an analog computer, subsequently digitizing the
recorded pressure data in the vicinity of the time of peak instantaneous distortion as
indicated by the analog processor, and then digitally calculating the distortion as a function
of time. For comparison, the steady-state and peak instantaneous distortion pressure
patterns are shown, as well as the time histories of each individual measured total pressure
referenced to the local steady-state pressure. The normalized pressure wave forms about
the time of peak distortion show little spatial correlation and it is clear from this and
other analyses that increasing turbulence levels would cause greater dissimilarity between
the peak pattern and the steady-state pattern. Moreover, the basic randomness of the
time-dependent tlow results in the pressure pattern at the time of the instantaneous peak
distortion being one sample from an uncountable population of patterns, hence the
engine-face pressure pattern corresponding with the peak instantaneous distortion is not
repeatable., The peak distortion pattern given in Fig. 2 may eventually be generated by
that inlet again, but the only reproducible data in Fig. 2 are the steady-state pressures
or other time-averaged quantities.

The distortion factor methodology as developed by engine manufacturers is the result
of correlating engine sensitivity to varied screen-generated pressure patterns with the
objective of expressing engine surge margin as a function of distortion magnitude
independently of pattern shape. Thus, inlet development testing can and should rely on
the distortion factor methodology for assurance of inlet/engine compatibility without
regard or concern about nonrepeatability of the instantaneous engine-face pressure patterns.
However, the present report questions the current practice of engine qualification testing
behind expensive screen simulation of the instantaneous pressure patterns obtained from
sub-scale inlet model tests when the inlet may never generate that exact pattern again.
Since qualification tests of engines subjected to representative extreme distortion patterns
do provide necessary confidence with respect to inlet/engine compatibility, it is
recommended that screens be designed with an approximate intensification of the
steady-state distortion pattern. This could be a simple linear stretching of the pattern
to a representative instantaneous distortion level or the "worst case projection" method
of Kimzey and Mcllveen (Ref. 10). The latter procedure should be more representative
since the turbulence distribution and phase relationships between pressure fluctuations are
an integral part of the method. Any desired distortion level can be achieved by selection
of the "crest factors" (ratio of peak-to-peak over rms level of individual pressures) so
that assurance of inlet/engine compatibility via screen testing could be achieved at any
desired level of confidence. The particular distortion level to be selected is the subject
of this report.
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23 RANDOMNESS OF DISTORTION FACTORS

Since the total-pressure fluctuations appear to be of a random nature and the various
distortion factors are functions of those pressures, it follows that every distortion factor
considered as a time sequence is representative of a stochastic process. Any instantaneous
sample from that process is only one possible sample from an infinite population. In
particular, the one observed peak instantaneous distortion within a finite observation or
data acquisition time period is just that - one observation. Admittedly, if an engine stalls
as a result of the distortion level, then that one observation assumes special significance.
The major objective of this report is to offer a means for interpreting time-variant inlet
distortion data obtained during inlet development tests, a period when no engine is present
to do the job of interpreting distortion levels.

The first step will be to estimate the probability distribution of a distortion factor.
It is assumed that the inlet flow process is stationary, that is, the statistical properties
of the distortion factor are invariant with time. It is further assumed that the process
is ergodic so that these statistical properties may be estimated from a single time sequence
and may be used to describe future realizations. For determination of inlet/engine
compatibility one is interested in the maximum distortion levels, not with average levels,
so that conventional methods of describing the distribution using central moments would
not be appropriate. Gumbel's statistical theory of extreme values (Ref. 2) is used because
in addition to the obvious suitability for analysis of maxima, it also eliminates the need
to select a restrictive family of distributions a priori.

3.0 PRINCIPLES OF EXTREME-VALUE STATISTICS

3.1 ASYMPTOTIC THEORY OF EXTREMES

The theory of extremes is a study of the statistical properties of observations that
are extreme in comparison to other values observed from the same population. An example,
and Gumbel's prototype, is the water flow of a river where floods are considered as extreme.
Gumbel's theory of extremes provides the analysis tool for estimating the sizes of future
floods. For the present study, the maximum observed distortion during a period of time
is considered as an extreme value.

The starting point* for the theory of extremes is the distributional properties of
the maximum of n independent observations from the same population. Let X, , X;,

aeey

*Gumbel’s remark seems appropriate - “the exact distributions of extreme values are easy to obtain and well
known. Yet every new worker in the vast field of breaking strength appears to find it nccessary to derive them over
and over again.”

10
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Xn denote n observations from the same parent population and let X be the maximum
of X;. The cumulative probability function of X is then given by

F(x) = Prob (X < x)

Prob (all X; < x)

(1

iilx Prob (X; < x)
= ¢n (x)

Thus, the distribution F(x) of the maximum of n observations is easily related to the
distribution @& (x) of the parent population. The practicality of this expression is limited
to cases where the original distribution is known. The major contribution from the theory
of extremes is that, for large n, the distribution F(x) has a known asymptotic form. Gumbel
(Ref. 2) gives three asymptotic forms depending upon assumptions about the nature of
the parent or initial distribution ®(x).

Gumbel's first asymptote postulates an initial distribution which is unlimited to the
right with all moments existing (e.g. normal, exponential) and can be written with two
parameters, aj, as

Fi1(x) = exp [- exp [-a1(x-a3)]] (2)
Gumbel's second asymptote postulates an initial distribution which is also unlimited

to the right but with some or all moments undefined because of a large right tail (e.g.
Cauchy) and can be written with two parameters, b;, as

Fa(x) = exp [- (by/x)P2] (3)

Gumbel's third asymptote postulates an initial distribution which is limited to the
right (e.g. Weibull reversed) and can be written with three parameters, ¢;, as

€3
€1 -X
F3(x) = exp - I:crd C))

As given in Appendix B, all three asymptotes can be restated in a single generalized
asymptotic distribution of extremes in the form

a-Bxtie
] (%)

F(x) = exp -[

e-pv

11
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In terms of application to distortion data, the ratio a/§ is the maximum level achievable,
* the parameter v may be thought of as the most frequently occurring extreme distortion
level (mode), the parameter a represents approximately the rate of increase of distortion
with the logarithm of time, and 8 is the distinguishing parameter for the three asympototes
(8 = 0 corresponds to the first asymptote, § < 0 is the second asymptote, and § > 0 is the
third asymptote.)

Defining a reduced variate t as (where log represents natural logarithm),
t = -loglog 1/F(x) (6)

the inverse of Eq. (5) can be written as

a a -8t
X=—B—-[—6—-P]e (7)

and the inverse of the first asymptote is the linear expression
X = ay + t/a 8)
where, for § = 0, the generalized asymptote reduces to @ = 1/a; and v = a,.

Although Ref. 1 recommended utilization of the first asymptote, further distortion
data analyses in the form of Fig. 3 have shown the extremes of time-variant inlet distortion
to be better described by the generalized asymptote. (Discussion of the procedure for
generating the information contained in Fig. 3 is delayed until Section 5.3.) In this typical
example, the distortion data clearly deviate from the first asymptote or straight line (8
= 0) and, for specific values of the parameters a, 8, and » the generalized (third) asymptote
provides a good fit to the data. Given that the general asymptote is a good representation
of the cumulative probability distribution of distortion extremes, there remains the problem
of determining the parameters a, §, and v.

3.2 PARAMETER ESTIMATION

The general asymptote describes a broad family of distributions dependent on the
parameters a, §§, and » which in turn are an unknown function of the inlet flow processes
and distortion factor formulation. This lack of knowledge is circumvented herein by
postulating that one has observed N distortion extremes X;, each selected from a fixed
time interval At, covering a total time period NAt of inlet operation. (Note that the time
intervals are not necessarily contiguous.)

12



€l
NORMALIZED DISTORTION, {D-AVG)/RMS

-2 -1 o 1 2 3

FIRST ASYMPTOTE

R\

THIRD ASYMPTOTE

DATA, 10 EXTREMES PER SECOND
FOR 30 SECONDS, TOTAL OF
~ 299 EXTREMES

| ] 1 1 | 1 1

F
w
-]

REDUCED VARIATE, 1

Figure 3. Comparison of the first and third asymptotes with inlet distortion data.

1ZL-¥4-H1-003V



AEDC-TR-74-121

Gumbel presents several methods for estimating the parameters and, although these
methods were relatively simple to use, the resulting estimates were not satisfactory®. The
authors also attempted parameter estimation with a nonlinear least squares fit to the
cumulative distribution of the order statistic, the latter being given by

F(x) = i/(N+1) 9

where the X; are arranged in ascending order (X; < X3 < ... < Xy). The difficulties
with this method arise from the fact that the elements of the order statistic are not
independent. While ignoring this fact may still give reasonable parameter estimates, the
interdependence must be used in determining the variance of the estimate. Even though
this method was rejected, the cumulative distribution of the order statistic was retained
as a visual aid for comparison with the distribution estimated parameétrically. That is, the
observed data are plotted (as in Fig. 3) using the ordered X; versus t; where

N+l
t; = -loglog =

The method of parameter estimation accepted by the authors used the principle of
maximum likelihood. This method gave the best results, avoided the a priori selection
of the asymptotic type, and yielded reasonable variance estimates. Details of the procedure
are given in Appendix B.

3.3 RETURN PERIOD

Gumbel has developed a return period concept which enables interpretation of the
probability levels (or magnitudes of the reduced variate) in terms of natural units of time,
which makes comprehension somewhat easier. In functional form the return period is
defined by

T-= 1 = 1
1-F(x) 1-exp(-exp(-t)) (10)

and represents the median number of observations necessary to obtain one value equal
to or larger than x. Since the distortion extremes are selected from a specific time interval
At, the number of observations T is also the number of time intervals, hence the return
period represents the inlet operation time required to observe (on the average) one
distortion extreme greater than x,

*Simulated results showed large variances for the estimates, formulas for variances were not available for all methods,
and in most cases the type of asymptote had to be seclected a priori.

14
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If analysis of distortion data is attempted using two sets of observations from the
same test condition with differing time intervals, then seemingly disparate results may
be obtained as illustrated by Fig. 4a. The difficulty is that one of the parameters of
the asymptotic distribution is a function of the time interval because the expected
distortion level increases approximately* as the logarithm of time. As developed in
Appendix B, consistent results can be obtained by redefining the reduced variate t for
one set of data so that the curve is shifted laterally by the logarithm of the time interval
ratio. For the example given in Fig. 4a, each extreme within the 28-point set was selected
from a time interval twenty times longer than the extremes of the 20-point set, thus
the shift should be log 20, and indeed this does yield consistent results. An alternate
presentation (Fig. 4b), the recommended one, can be made using the return period (with
physical units of time) which bypasses the necessity of maintaining a fixed time interval
among multiple data sets.

0.08 T ) T T
28 PEAKS IN 28 SEC
007 -
:
&
-
o
o
-
@
o
0.06} <~ 4
/f 20 PEAKS IN 1 SEC
/7
o) | | ] 1
O.0§2 o] 2 4 6 8

REDUCED VARIATE, t

a. Reduced variate concept
Figure 4. Interpretation of extreme-value statistics utilizing the reduced variate
and return period concepts.

*Exactly for the first asymptote.

15
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b. Return period concept
Figure 4. Concluded.

The results given in Fig. 4 also illustrate the power of extreme value statistics: one
second of inlet distortion measurements can yield answers comparable to the results of
a much longer time period of inlet operation. A short time segment of distortion data
can be used to statistically predict future distortion levels.

34 VARIANCE ESTIMATES

One of the advantages of using the method of maximum likelihood for estimation
of the three parameters of Eq. (5) was the ability to also estimate the variance {or.ac¢uracy)
of the result. As detailed in Appendix B, the intermediate results used in computation
of the parameter estimates can be used to form the variance-covariance matrix of the
three parameters. Expansion of Eq. (7) by a Taylor seres about any desired probability
level then allows estimation of the variance of the distortion corresponding to that
probability level. Since the probability level can be related to the return period, one can
therefore estimate the variance of the expected peak distortion corresponding to any time
period of inlet operation.

16
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Since the parameters are asymptotic normally distributed, one-sigma tolerance bands
constructed from these variances represent nominally ; 68-percent confidence levels.
However, comparisons of the statistical prediction of a ¥uture distortion level with an
observed peak distortion data point require consideration' of variance of this future
observation. That is, the peak instantaneous distortion within a finite data acquisition
time peribd is itself a random variable so that comparisons between the observed and
predicted level must allow for variances from both sources. As detailed in Appendix B,
the variance of the peak instantaneous distortion decreases with increasing data acquisiton
time (provided § > 0) so that for large times the observational variance is usually negligible
relative to the parameter estimation variance.

-

The one-sigma tolerance bands are' of course dependent on the data and generally
become smaller with increasing number of extremes. As an example, the effect of using
" 5 extremes per second for the initial six and twelve seconds out of a two-minute record
is illustrated by Fig. 5. The tolerance bands of Fig. Sb are clearly more narrow than
those of Fig. 5a and, generally speaking, the bands decrease in proportion to v/N (N
being the number of extremes) as they should for normally distributed parameters. The
solid symbol in Fig. 5 is the peak instantaneous distortion for the full two minutes. Note
that the 'one-sigma tolerance bands become larger with increasing return period and are
smallest in the vicinity of t = 0.

The mode or most probable distortion level is given by

Ym = a/f - (a/f - v)(1 - B)F ' (11)

and in the limit of § = 0, y,, = v, which is the distortion magnitude at t = 0. Since
most distortion data result in small 8 as will be shown and the estimation tolerance
is near minimum at t = 0, the parameter » is termed the modal value and will be used
herein as the major descriptor of peak distortion levels.

The estimation tolerance is generally quite large for the limiting distortion level e
‘= aff when estimated from a practicable number of extremes. Typical tolerance results
for € are 2100 percent when computed from 60 extremes selected from twelve seconds
of distortion data akin to Fig. Sb, whereas tolerances on the order of +5 percent may
be expected from data like that of Fig. 3*. Therefore, one should generally not attempt
extrapolation of the extreme-value results beyond more than, say, 100 times the basic
observational time unless the tolerances indicate otherwise.

*Duc to inlet scale, Fig. 3 effectively represents approximately twelve times the total data quantity of Fig. 5b.
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To provide insight and an appreciation for the overall accuracy of the analysis, several
examples are presented in Fig. 6, each case being twelve seconds of data with the
extrapolation compared to a two-minute peak instantaneous distortion point similar to
that given in Fig. 5b. These examples cover a wide range of Mach number, inlet geometry,
and airflow and are typical of data acquired at AEDC with a variety of inlet designs.
(The reader is cautioned not to infer an approximate constant slope, in that each example
generally uses a different ordinate scale.) The line codes of Fig. 6 are the same as used
in Fig. 5. The primary conclusion gained from these examples is that the tolerance bands
are applicable to prediction of future distortion levels.

4.0 APPLICATIONS TO INLET DISTORTION DATA

In the preceding sections the development of extreme-value statistics and its relation
to time-variant inlet distortion were discussed. Some practical aspects that should be
considered when using the techniques for routine analysis of inlet distortion data are given
in the following sections.

4.1 EFFECT OF NUMBER OF EXTREMES

Application of extreme-value statistics to time-variant inlet distortion data requires
the arbitrary selection of two time intervals: the total data time length t for which analysis
is desired and the incremental time At from which each extreme will be chosen. The
number of extremes N is the ratio t/At. As developed in Appendix B, the parameters
a and 8 are independent of At, whereas the modal value » is a function of At.

As an illustration of the effect of the incremental time At, Eq. (1) has been used
with tabulations (Ref. 11) of the Chi-square family of probability functions to compute
the expected level of an extreme as a function of n, the number of independent samples.
For demonstration purposes, assume the time interval At to be proportional to the effective
number of independent observations. The results are given as Fig. 7 with the mode
considered as a standardized variable. The asymptotic form of the Chi-square family is
Gumbel's first asymptote, thus Fig. 7 also provides some insight as to the number of
independent observations required to allow its use with an a priori selected parent
population. For example, if one knew the parent population had a Chi-square distribution
with only a few degrees of freedom, then extremes selected from small samples could
accurately be analyzed with the first asymptote, whereas large degrees of freedom require
much larger samples for the first asymptote to be valid. That is, the first asymptote is
applicable if the expected extreme is a linear function of the logarithm of the number
of independent samples.
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Figure 6. Representative comparisons of predicted and observed peak
instantaneous distortion.
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Figure 7. Dependence of the expected extreme on the number of independent
samples for the Chi-square distribution family.

These results also point out the fallacy of the commonly used 3-sigma criteria for
estimation of random variable maxima. Even if normality can be assumcd, an expected
maximum (or minimum) of three standard deviations away from the mean is valid only
for nominally 1000 observations. The 3-sigma criteria are too stringent for a greater
quantity of data and much too lax for fewer observations.

As further illustration of the effect of At variations, data from several test conditions
similar to that used for Fig. 3 were processed, holding t constant at about 30 seconds
and using nominal At increments of 0.1, 0.2, 0.4, etc. The dependence of the standardized
modal value on the net number of extremes is given in Fig. 8 where each symbol
corresponds to a specific test condition. The straight line fairings validate the expected
logarithmic dependence of the mode on the number of extremes.

As with most statistical analyses, decreased confidence intervals are generally obtained
with increased data quantity. On this basis, one would expect improved accuracy of the
parameter estimates by maximizing the number of extremes selected. However, the
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asymptotic theory of extreme values is not, in general*, valid for relative peaks that are
comparable in magnitude to the mean of the total population, so that one must be careful
to select extremes which are truly large. It is therefore recommended that each peak be
selected from nominally 50 independent samples subject to a lower practical limit of 20
extremes altogether.

The incremental time At required to obtain 50 independent samples of distortion
data depends on the inlet size (scale), turbulence level, and frequency bandwidths of the
pressure signals and distortion calculator. Further, there appears to be some dependence
on the nature of the turbulence with differing results being noted for simple boundary-
layer radiated noise and the more regular shock-boundary-layer interaction turbulence
generation, the latter requiring more data for independence.

o
1
1

NORMALIZED MODAL VALUE

() 1 1 1 1
10 20 50 100 200 800
' NUMBER OF EXTREMES, N

Figure 8. Dependence of the modal value on the number of extremes.

42 EFFECT OF FREQUENCY BANDWIDTH

Moore (Ref. 5) has developed the similarity parameter A to correlate time-variant
distortion data from various scale inlets, the expression being

*Of course, if the parent population distribution matches Eq. (5), then the asymptotic theory is valid for all
observations.
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_ 2mf,
T a (12)
where r = engine-face duct radius
fo = low-pass filter cutoff frequency
a = local speed of sound

The need for this parameter is evidenced by the wide variation of observed peak
instantaneous distortion as a function of frequency bandwidth, typified by the data of
Fig. 9. These data were originally digitized at 7700 samples/sec for one second with a
2000-Hz low-pass analog filter (A = 2.4), then digitally filtered to achieve varying A. The
different test conditions are identified by consistent symbols for Figs. 9 through 13.
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Figure 9. Effect of frequency bandwidth on peak distortion magnitude.
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Figure 10. Computed pl'obabiiity density distributions with variation
of Moore’s similarity parameter.

Various engine manufacturers have settled on low-pass frequencies for time-variant
distortion data analysis which nominally correspond to the engine rotation frequency, based
on correlations of engine stalls with peak distortion data filtered at that frequency. For
sonic tip speed, this frequency corresponds to A = 1. The steady-state distortion level
corresponds to A = 0.

To gain insight as to the true effect of A variations on distortion data, the probability
density distributions for several test conditions were computed with a typical result given
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as Fig. 10. Within the accuracy of these calculations, the probability density functions
are reasonably independent of A, although some skewness is evident. This independence
is primarily the result of the rms level compensating for the variation in the data; that
is, decreased frequency bandwidth yields decreased distortion fluctuation about a decreased
mean (see footnote, Sec. 2.2), all being correlated by the usual standardized random
variable. However, the extremes of distortion are not correlated by the rms level, there
being a consistent trend of decreasing normalized peak distortion with decreasing A. This
trend is particularly evident (Fig. 11) for the modal value, the most frequently occurring
distortion level.

Recalling Figs. 7 and 8, one way to observe a decreased expected extreme is for
the number of independent samples to have decreased. Reference 12 offers a method*
for estimating the number of zero crossings of a standardized random variable and this
number is proportional to the number of effectively independent samples. The curvature
of the normalized autocorrelation function, R, of the distortion factor at zero lag time,
T, is evaluated, with the number of zero crossings per second then given by

1 | a2r|'/?
No = o [ d_Tz—:Lo o
This parameter has been evaluated for a few test conditions with varying 7, the results
being given as Fig. 12. Finally, Fig. 13 illustrates the modal value as a function of N,/N
along with the compatible result obtained by varying the number of independent samples
per extreme by varying At as was done for Fig. 8. Thus, decreased frequency bandwidth
results in both a decreased rms level and a reduction in the relative number of independent

samples. Application of extreme-value statistics to time-variant distortion data therefore
either requires consistent specification or compensation for any differences.

If A is a true similarity parameter, then the effect of A variation by means of frequency
bandwidth variation is equivalent to variation by either the duct radius or the local sonic
velocity. It is interesting to speculate that cold-day aircraft operation would be more
conducive to engine stall than hot-day flights as a result of sound speed difference which
causes higher peak distortion levels. It is known that variation of the duct radius must
be compensated by changes in the filter frequency to achieve comparable distortion results.

*Although the method was developed assuming normally distributed data, it is used here with the results
demonstrating its validity.
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Figure 13. Dependence of the normalized modal distortion on the ratio
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5.0 RECOMMENDED PROCEDURES FOR ANALYSIS OF INLET DISTORTION
5.1 INLET DEVELOPMENT TESTING

Inlet performance is characterized by airflow, recovery. drag. and distortion. The ideal
performance is that combination of high recovery, low drag. and low distortion, all at
the desired engine-match airflow with a wide operating envelope about that match point.
Real injets are required to give acceptable performance over such a wide range of Mach
number and aircraft attitude with resulting design compromises that the ideal performance
level is rarely achieved for any operating condition. To monitor the effects of inlet
modifications, several critical or representative conditions are selected and these "tracking
points" then artificially become the most important test conditions.

Based on analyses of time-variant inlet distortion data from four aircraft designs and
observations of the airframe and engine manufacturers' profitable use of wind tunnel test
data on sub-scale and full-scale inlet models, the following procedures are recommended:
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1. The current practice for data acquisition is to record the time-variant engine-face
total-pressure signals for 30 seconds at each test condition for a sub-scale model inlet
test. This time period is necessary to be reasonably sure of documenting the higher
distortion levels, particularly so if one is seeking a representative peak instantaneous
distortion. However, since application of extreme-value statistics to a short (1 to 2 seconds)
data segment can yield equivalent results, it is recommended that data acquisition times
be correspondingly reduced. Verification of the validity of the extreme-value analysis can
be accomplished by optionally testing longer at the tracking points. It is suggested that
a data acquisition time period equivalent to 5 sec of full-scale inlet operation is sufficient
to document the statistical characteristics of inlet flowfields at stationary test conditions.

2. The distortion factor time series can be obtained from analog and/or digital
computers, specific examples are discussed in Section 5.3. Whatever the means, it is
recommended that the entire time period' be processed to obtain the distortion extremes
with analysis as discussed herein.

3. Since the results to be obtained from the extreme-value analysis are dependent
on the data time base, it is important that this time base be held fixed throughout a
test series. In like manner, the similarity parameter A must be maintained constant to
achieve comparable results. The final parameter to be selected is the number of extremes,
N. Based on the analyses conducted during preparation of this report, it is recommended
that N = 30 be used for normal data processing.

4. It is recommended that the parameters of both the first and general asymptotes
be evaluated for reasons discussed in Section 5.3. The end result should be an estimation
of the expected maximum distortion level (with tolerance band) to be encountered within
a specific time interval of full scale inlet operation.

5. Inlet design optimization cycles would then be targeted towards reducing this
distortion level without compromising other performance criteria. If the indicated distortion
reduction lies within the tolerance band, then one should not conclude that that particular
optimization path had significant influence on maximum time-variant distortion levels.

5.2 INLET/ENGINE COMPATIBILITY DEMONSTRATION

As discussed in Section 2.2, distortion patterns for screen simulation of inlet flow
should be based on the steady-state pattern rather than on one isolated instantaneous
pattern. The extreme-value analyses can be used to determine the desired intensification
of the steady-state distortion level, based on the return period concept.
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The available stall margin is usually allocated to engine tolerances, age deterioration,
transients, and distortion, with all of these assumed to be additive. It is suggested that
some blending of the allocation for transients and distortion is proper in that the expected
distortion maximum within the time duration of a transient is significantly less than that
associated with steady-state operation.

Conversely, the distortion level selected for engine qualification should be
representative of that expected within the time period of the simulated flight condition.
That is, the distortion level should correspond to that expected in a period of hours for
a cruise condition but perhaps only seconds for a maneuver condition.

Engine testing with an inlet or inlet simulator is the true proof of inlet/engine
compatibility. For this type of testing, one is not interested in the distortion levels which
could occur but rather what did occur. Extreme-value analysis of the time-variant distortion
is still beneficial in the sense of data quality assurance and detection of abnormal flow
conditions. An engine stall may occur as the result of an instantaneous peak distortion
level which would be expected only once during the engine's lifetime; demonstrated
stall-free engine operation for this event is a criteria too stringent for normal inlet/engine
compatibility testing.

53 DATA PROCESSING

The mechanics of obtaining the distortion extremes depend on the resources available,
such as analog and/or digital computers and capability for time-correlated analog-to-digital
signal conversion of the engine-face pressures. Various techniques were used for the
illustruations contained herein and a discussion of these procedures is given below, followed
by a description of an "ideal" system.

The analysis illustrated by Fig. 3 was based on the availability of an analog computer
which calculated various distortion factors in real time, the output being recorded in analog
form on magnetic tape. Subsequently, the distortion factor signal was played back through
a peak detector with the detector threshold being reset every 0.1 sec after the output
level was read by an analog-to-digital data acquisition system. The digital distortion
extiemes were then recorded on magnetic tape for later analysis.

The data contained in Fig. 4, representing 28 seconds of inlet operation, were obtained
in the manner given above, except that the peak detection and digitizing were accomplished
in real time in conjunction with an on-line data acquisition system. The data representing
one second of inlet operation were obtained subsequently by digitizing the engine-face
pressure signals (time selected at random), digitally computing the distortion factor at
each time slice, and then selecting the extreme from each of twenty equal time intervals.
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Although no examples are contained herein, many segments of digital pressure signals
for a short time interval containing the instant of peak distortion from a much longer
time period have been processed. Direct application of extreme-value statistics is possible
provided one weights the largest distortion peak according to the corresponding time ratios
(and assumes the second largest peak is independent of the first).

The data of Figs. 5 and 6 and analysis results were obtained in practically real time
by monitoring the output of an analog computer with a peak detector resetting every
0.2 seconds for a total of 12 seconds. The analog computer also contained a peak detector
which was not reset, so that at the conclusion of the data acquisition time period of
nominally two minutes the peak instantaneous distortion level was also available. The
12second set of extremes was then digitally processed to obtain the results shown with
the analysis being a part of the on-line test data package.

The major shortcomings of an analog distortion calculator is the unavoidable
inaccuracy created by the approximations used to compute a distortion factor and by
the inability to compensate for zero shifts of the dynamic transducers. Although these
difficulties can be overcome with digital processing, the expense and time required are
prohibitive for most test conditions. However, it is feasible to combine the features of
the two techniques into a hybrid analog/digital system which would provide digital
processing accuracy at nominally analog processing expense. The technique would consist
of monitoring the analog distortion signal with a peak detector, sample and hold the
individual pressure signals at the instant of each step in the peak detector output, digitize
the stored pressure data at fixed time intervals, transfer this information to digital computer
memory, and then reset the peak detector and continue. If measurements of the true
steady-state pressure and time-averaged outputs of the dynamic transducers are available,
then the differences are the zero shifts which can be applied to the instantaneous pressure
data and the distortion extremes thence computed without error.

The analyses presented as Fig. 6 include some examples of the distortion data
indicating the second asymptote to be the best descriptor (curved up instead of down).
This occurrence is attributed to sampling fluctuation. In such cases it is recommended
that the first asymptote be used instead of the general results and the answers flagged
accordingly.

The use of maximum likelihood estimation for the parameters necessitates utilization
of a digital computer to obtain the results. A FORTRAN Ilisting of the program developed
for this purpose is given in Appendix C along with samples of input/output. The various
subroutines have not been optimized from the standpoint of computer time so that
execution time (including plotting) averages about 3 seconds for 60 extremes on an IBM
System 370/155, required core being about 70k dependent on the data sources(s). A card
deck is available on request to the authors.
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6.0 CONCLUDING REMARKS

Application of Gumbel's extreme-value statistics analyses to time-variant inlet data
from four aircraft designs has led to the following results and recommendations:

1. The peak instantaneous distortion as observed within a finite data
acquisition time period is random and not repeatable, as is the engine-face
pressure pattern for that instant.

2. A short time segment of distortion data can be used to statistically predict
the expected maximum distortion level corresponding to any time period
of inlet operation, including estimates of the prediction tolerance.

3. Engine qualification testing should use screens based on the steady state
rather than a peak instantaneous distortion pressure pattern with the
distortion being intensified to the expected maximum level corresponding
to the aircraft operation time at specific test conditions.

4. Data acquisition time periods during inlet development wind tunnel testing
can be reduced from the current 30 seconds to nominally 2 seconds for
stationary test conditions, provided that analysis of the resulting time-variant
distortion is based on extreme-value statistics.
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APPENDIX A
DISTORTION FACTOR FORMULATIONS

Complete description of the engine-face total-pressure pattern requires specification
of all the pressure measurements, P, which make up that pattern (a difficult comprehension
task when dealing with forty or so measurements). Various investigators have attempted
to quantify the significant characteristics of the patterns with a manageable set of
descriptors, termed distortion factors, which describe both the nature and intensity of
nonuniformity. ‘

The distortion factors have evolved from the simple expressions:

(maximum P - minimum P)
average P

D,

and

(average P - minimum P)

D,

average P

which specify the intensity or magnitude of distortion through slightly more complicated
expressions which distinguish between radial and circumferential variation in the total
pressure to the current methodologies of Pratt and Whitney or General Electric, for
example, which correlate engine stall margin with distortion level.

The specific distortion factor equations used for the current study are given herein
for the purpose of illustrating both the differences among them and an overall sameness
when considered as descriptors of a stochastic process. Even though the distortion factor
formulations vary considerably, the resultant time-variant description of inlet flow
nonuniformity is basically random and, when normalized by the mean and standard
deviation of the time series, notable consistency is achieved with the extreme-value
statistics.

PRATT AND WHITNEY DISTORTION FACTORS (Ref. 13)

Referring to Fig. A-1 for the general engine-face probe geometry and nomenclature,
the measured pressures are designated by P;; with i being the ring designation and j denoting
the rake location. The circumferential distortion factor, KTH, is computed by obtaining
a 4-term Fourier fit to each ring of pressures

J 4
Pi(6;) = JL Z Pyt I Am sin(nd; + 6)
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and selecting the maximum weighted harmonic amplitude for each ring
A; = maximum (Ap;/n2)

KTH is then given as

where q = face-averaged dynamic (1/2 pv2?) pressure.

The radial distortion factor, KRA, is normally computed as a weighted average of
deviations in average ring pressure from a base or reference radial profile. For the current
study the reference profile was uniform with KRA being computed from

1 1 J —
2|y .zlPij/P'l | D

= i=1 7 =1
KRA = -5
.~N
a/ i=21 D;
where P = face-averaged pressure
n = radial weighting exponent = 2.86

The face-distortion factor KA2 is computed as a weighted sum of the circumferential
and radial components:

KA2 = KTH + b KRA

where b = weighting function.

For most test conditions and most inlets, the radial and circumferential components
are negatively correlated, with one result being that the peak or maximum instantaneous
KA2 is less than the weighted sum of the component peaks.

[y

GENERAL ELECTRIC DISTORTION FACTORS (Ref. 5)

The circumferential parameter, IDC, and the radial parameter, IDR, are both
dependent on ring-averaged pressures

1
Ri='J"

)
HM =

P;;
]
J
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For each ring, the lowest pressure in the ring defines an IDC component
IDC; = (R; - Pij min)/P

thence, hub and tip parameters are computed as the average of the two ring components

IDChyp (IDC; + IDC,)/2

IDCtip (IDC; + IDC[.l)/2

and then the circumferential distortion factor is assigned the magnitude of the largest
component

IDC = maximum of IDCyyp or IDCyjp

The radial distortion components in each ring are defined as
IDR; = (P - R)/P

and the radial distortion factor is assigned the magnitude of the largest of the hub and
tip components

IDR = maximum of IDR;; i = 1,2,I-1,]
An overall distortion factor ID can be expressed as simply
ID = IDC + IDR

but the more descriptive stall margin parameter can be computed from the components
of the circumferential and radial distortion parameters utilizing extent and shape
parameters. Some data presented herein were computed using nominal stability usage
factors, B, in the form

IDL = B, x IDC + B x IDR

To illustrate the statistical similarity of all these distortion factors, one segment of
digital time-variant engine-face data was processed with all distortion factors being
computed. Results of application of the order statistics are given in Fig. A-2 with the
ordinate being the normalized parameters, that is, subtracting the mean value and dividing
by the standard deviation of the basic distortion factor time series. The basic peint to
be made is that any distortion factor computed from time-variant engine-face pressures
can be treated as a random variable. Practically regardless of the formulation of that
distortion factor, the underlying pressure data govern the characteristics of the result and,
in particular, control the probability distribution of the extremes.
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As noted in the text, the time-variant distortion factors are calculated by both analog
and digital computers. The accuracy of the analog results from four reptesentative inlet
tests has been evaluated by also processing data digitally around the time of the peak
instantaneous distortion. These data are given in Fig. A-3 and show the analog computers
to be typically about five-percent accurate, However, later designs utilizing hybrid
analog/digital processing have demonstrated one-percent accuracy.

o’ J=l

Figure A-1. General engine-face probe geometry and nomenclature.
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Figure A-1. Comparisons of the cumulative distribution of various distortion factors.
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ANALOG KA2
ANALOG IDL

(4] 2.5 o] 2.5
DIGITAL KA2 DIGITAL IDL
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ANALOG I1DC
&
ANALOG I0L
0

DIGITAL IDC DIGITAL IDL

Figure A-3. Evaluation of the accuracy of analog distortion computers.
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APPENDIX B
ANALYTIC DETAILS

The objective of this Appendix is to provide the necessary supportive background
for interpretation and application of Gumbel's asymptotic theory of extreme values. The
generalized three-parameter distribution is formed from the third asymptote, followed by
a discussion of its properties with respect to independent sampling and sampling from
different time interval lengths. Details of the parameter estimation procedure are given,
including the method of variance approximation.

As a starting point, consider
Y = maximum (y;) i= 1, 2, ..n

where the y; are identically distributed independent random variables. As shown by Gumbel
(Ref. 2), the asymptotic distribution of Y as n increases depends upon the distribution
of the individual y, with three specific types of parent distributions yielding Gumbel's
three asymptotes. :

Exponential type (First Asymptotic Distribution):
F(y) = exp [-exp [-a1 (v - a3)]] (B-1)
Cauchy type (Second Asymptotic Distribution):

F(y) = exp [- (b1/y)P2) (B-2)

Limited type (Third Asymptotic Distribution):

- [
F(y) = exp [ -2 y] ? (B-3)

€2 -¢

where aj, b;, and c; are parameters. All three asymptotes can be expressed by a generalized
three-parameter distribution by substituting into Eq. {(B-3):

a = c/cs
B = l/c3
vV =

with the result being
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gy t/e
F(y) = exp [ Zgﬁ] (B4)
Fiy) =0 y<a/fand § <0
Fy) = 1 y>a/fand § >0

The first asymptote results from Eq. (B-4) with § = 0, the second asymptote in
three-parameter form with § < 0, and the third asymptote with § > 0.

Two important properties of the generalized asymptote F(y; a,8,») are: (1) the
distribution of Y may be made arbitrarily close to some distribution from the F(y; a8,»)
family by choosing a sufficiently large n. The distribution chosen from F(y; a,,) as
being approximately equal to the distribution of Y will depend upon n, in which case
the parameters should be subscripted, (a,, B,, vn); and (2) if the distribution of the y;
is a member of F(y; a8,v), then the distribution of Y is a member of F(y; a,8,») for
all n.

Let us now turn to the real problem of a stochastic process x(t) wherein we seek
the distribution of X which is composed of the maximum of x;(t), (i = 1,2,...,n) selected
from sub-time intervals At. It is assumed that the process is stationary and ergodic so
that the x; are identically distributed, but they are not independent. However, though
adjacent values of x(t) may show strong correlation it is not unreasonable to assume that
two values are essentially independent if they are separated by a sufficiently large time
interval 7. Following this line of reasoning, an interval of size nAt would contain nAt/r
independent samples. If nAt >> 7 then one could conclude the distribution of X is
describable by the asymptotic distribution F(x; a,8,»). While these comments are heuristic,
the conclusion has been rigorously shown for certain cases and assumptions (Ref. 2). An
even better justification for the implied assumptions of independence of the x;(t) is the
excellent results obtained when using actual distortion data. As with the independent case
where the parameters a, 8, and v depend upon n, in the case of a stochastic process
these parameters are functionally dependent upon the interval size nAt.

This interval size dependence can be shown by postulating X; to be the maximum
of ith of n adjoining intervals, such that the maximum X* of these X; may also be
considered to be the maximum of an interval n times in size. The multiplication rule
yields

Fx«(x: ay, Bn, vn) = in(xi afp)
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Now consider x1, and xr, to be maximums from intervals of lengths T; and T,,
respectively. If T; and T, are commensurate, then we can write

where m and n are integers. Let xt, be the maximum from an interval of length mT; or
nT,, then

F"T3(X; afy) = F;n-l-l(x, ary, Br, v1y)

F:TZ(X; ar,, 6'1'2, vTZ)

or
r
FxTz(X; ar,, B’l‘z: V'l'z) = Fle(X; ar, BTI: VTI)

The incommensurate cases follow if Fy.., is assumed to be a continuous function of r.
Substituting the above into (B-4) yields

ar, -PBr,y x /61, ar, -Br, x ety
S e ———— — r ——————
at, - Bty ¥, ar, -Bry ¥t

This being an identity for all x implies

a'rz = a.'rl

Br, = Br, (B-5)

l
bty = br; [aTl - (ar, y Br, VTl)r'ﬁTl:l

Thus the parameters a and 8 are independent of interval size and, for 8 = 0, the parameter
v is a monotonic increasing function of the interval size for fixed frequency bandwidth.
This effect must be considered when comparing probability plots of data where the interval
sizes are different. Since

- loglog 1/Fxy, (x; afur,)
= - log r - loglog llFx.l.l (x; aBur,) (B-6)

Comparisons can be easily made by shifting the curve by the amount of log r when using
- log log 1/F(x) as the plotting abscissa.
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We now come to the problem of estimating the parameters a, 8, and v from a sample
X1, X3, ..., X,. Although there are many methods which may be used to estimate these
parameters (e.g., Ref. 2), the method used for this study was that of maximum likelihood
(e.g., Ref. 14). The likelihood function is defined as the joint probability density function
of the sample:
d

fx; adp) = I -2 Fxi, afw)

L='1 i=1 dx

n
i=
The maximum likelihood estimates are then the value of the parameters which maximize
the likelihood function for the observed sample, Intuitively, this can be visualized as
selecting the parameters so as to maximize the probability of occurrence within a small
fixed n-dimensional volume about the sample. Maximum likelihood estimates were chosen
for several reasons as follows:

(1) They are efficient. That is, the product of sample size and variance of the estimate
has the smallest limit as the sample size increases. Other estimates may have the same
limiting variance but none will be better.

(2) They are invariant. This is particularly useful when the parameters of interest
are not directly estimated. For example, when a and 1/3\ are maximum likelihood estimates
of a and f, invariance means that € = a/é\ is the maximum likelihood estimate of the
limiting distortion, € = a/B.

(3) Large sample theory shows that the limiting distribution of the estimates is normal
and gives relationships for the limiting variances and covariances. This enables one to
compute variance estimates of the estimated parameters, thence to compute approximate
confidence intervals for the predicted distortion level as a function of time.

For convenience, the logarithm of the likelihood function is maximized which is
equivalent to maximizing the likelihood function since the logarithm is a monotonic
increasing function. The required estimates are found by solving the three equations

0logL
= =0
oa !
dlog L =H, = 0 (B-7)
B
Olog L
EH3—0
ov
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The technique used for this solution is a modified Gauss-Newton iteration based on the
method given in Ref. 4. Using a superscript '*' to denote initial guesses for the parameters,
Eq. (B-7) are linearized in the form

H* aHj R aHj aHj A

-+ + + =

jt g At 5y M 5 Av=0
i=1,2, 3

and then solved for Aa, AB, and Av. A quadratic approximation P(y) to ZH;? is then
minimized along the line segment defined by

(a* + vAa, p* + YAB, v* + yAV)

with 0 < 4 < 1 and the quadratic coefficients evaluated utilizing the following three
conditions:

P(y) = ZH;2 at y = 0 and v = |
dP

_(7_)=d_ZH12 at'y:o

dy dy

Let 7y, denote the value of 4 that minimizes P(y) and define

H, = minimum ZH;? Yo = 0, Ym, or 1
Y = Yo

If H, occurs at vy, = 0, the quadratic approximation step is repeated over the interval
0 < v < 4y until H, occurs at either y, = yn or ¥, = 1, in which case the next
iteration step is started with parameter guesses of

(a* + v Aa, * + 9o AB, v* + v, Av)

The resulting iterations form a sequence of vectors (a, 8, v) such that the corresponding
EHJ-2 form a monotonic decreasing sequence. The iterations are repeated until a desired
numerical convergence criterion is satisfied.

The asymptotic variance-covariance matrix of these maximum likelihood estimates
can be obtained as follows (Ref. 14). Let H;; denote second partial derivatives of log
L with respect to the parameters, for example

92 log L

Hya = dadp
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then the expected value of these partials at the maximum likelihood point is approximated
by the numerical averages

A 1 n AAN
Hj = ¢ Z, Hyj (x; afp)
i=1,23
i=1,23

The variance-covariance matrix is then estimated by
N 1 A
[Vi;] =-5 [H;lH

An approximation to confidence intervals for the estimated distortion magnitude y
as a function of the reduced variate t can be constructed from the variance-covariance
matrix elements utilizing a Taylor series. The inverse of Eq. (B-4) can be written

y(t) = 7 - (f,—‘ - v)e-ﬂt

where
t = - loglog 1/F (y; a, B, »)

thence
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By using the return period concept, the estimated cumulative distribution may be
used to estimate maximum distortion levels for future intervals. However, the above
variance estimates are not the variance of a future observation because the future maximum
is a random variable and will contribute an additionfgl source of variation. Denote the
futux;g observed maximum l,)\y Y and its estimate by Y. To obtain a confidence interval
for Y, the variance of (Y-Y) is required. Now, Y has an asymptotic distribution given
by Eq. (B4) with the parameters given by Eq. (B-5) where r is the ratio of the time
interval of the future maximum to the time interval of the individual extremes of the
data sample used to estimate the parameters. The variance of this distribution may be
estimated by (Ref. 2)

52



AEDC-TR-74-121

A
2 =(% B (1428) - T2 (1+4B)Ir28 (B-9)

A
Now Y has anAasymptotic normal distribution with variance estimate given by Eq. (B-8).

A
Since Y and Y are independent, the variance of Y-Y is the sum of the two variances
and may be estimated by

2 2 2

Sy§ TSy T ¢ (B-10)

Onesigma limits on Y are then estimated as

A A
Y - SY-Q: Y + SY-/Y\
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APPENDIX C
COMPUTER PROGRAM DETAILS

This Appendix provides a brief description of the numerical implementation of the
procedure described in Appendix B. The basic data source is presumed available in the
form PKy; I =1, 2, ..., n with optional use of the average and root-mean-square distortion
levels as normalizing parameters. Although the authors usually plot the analysis results
using Calcomp® routines, this coding is not included in the program listing. The program
evolved with development of the theoretical approach and could be greatly refined to
be more efficient, particularly in the areas of making analytic simplifications of the
likelihood function and streamlining the method of solution of the maximum likelihood

equations.

DESCRIPTION OF SUBROUTINES

MAIN

CARD

LISTER
READB
READC

READD

ORDER

EVSTAT

EXTVAL

NLLSQ

Calls CARD and either READB, READC, or READD to obtain basic input
data. Calls EVSTAT. Use of external error handling routines is required
for the occasional set of bad data or nonconvergence within NLLSQ.

Calls LISTER. Reads title and option codes from data set 5.
Prints input card image.

User-furnished routine for input data source.

Input data from cards, data set 3.

User-furnished routine for input data source on magnetic tape, data set
11,

Orders given peaks into ascending magnitude array and generates index of
original order.

Normalize data if desired, calls ORDER. Calls EXTVAL to obtain first and
general asymptote solutions. Calls PRNT and/or EVPLOT as desired for
output of results.

Calls NLLSQ for solution of the maximum likelihood equations and
VARIAN for computation of the parameter variances.

General routine for solution of the nonlinear least squares fitting problem
using a modified Gauss-Newton iteration. Calls EVAL for computation of
partial derivatives and CHOLES for matrix inversion.
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CHOLES

VARIAN
PRNT

EVPLOT
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Computes partial derivatives of the likelihood function. Note that coding
solves for the derivatives with respect to €, 1/8, and v and then transforms
these results to the desired relations. Entry DATSET initializes routine.

General routine for matrix inversion using the method of Cholesky.

Computes parameter variance estimates. Calls EVAL and CHOLES.
Prints results on data set 6.

Generates plotted analysis uusing Calcomp routines. Entry PAGE] opens
and closes plot file.

The following tabulations include a sample input and output using READC and the
program listing.
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NO00000000040NRONRRRRRRRNEENE0N00R0N00e0® CARD [NPUT 0000000000000000000000300000000300000000000

CARD

COLUNN

"CARD

COLUMN

1111111111222222222233333333334444404444555555555566666566666 77777777778
1234567890123456789012345678901234567890123456789012345678901234567890123456 7890

SANPLE CASE OF CARD INPUT DATA === UNaNORMALIZED
1 1 1 1 0 0

—1___14____2 6,1800=01 1.1200=01 ____ __
LINPUT VAR® 800,95,9120.9141803%0,91¢95%0, &END
LOATA PK1® 93]y o765y
+869,y (850,
eT2ls 773y
+820y (829,

e 40

- - . . GEND__ _—
SAMPLE CASE OF CARD INPUT DATA === NORMALIZED

0

le

1

40
S1INPU
ADATA

« 757
o832y
o T85e
+838,

«970,
+863,
«T699
o T669

1
1

T &END
LEND

111111111122222222223333333333404644444445555555555666666666677777777778
12245670901234567890123456789012345678901234567890 1234567890 12345678901234567890

28801 2839y 2851
.1.5' ..510 «996,
«815s 8600 833
2794y 915s 27880

0 0
2 6,1800-01 1.1200-01)

EXTREME-VALUE sTatvisvtics

SAMPLE CASE OF CARD INPUY DATA === UN=NORMALIZED

SEGMENT START TINE

NUMBER OF EXTRENES 40

«9330 4891y T72s
o8TTs +89]1s 905,
« 759 9139 4801,
«91le <881y 903

ANALYSIS

RANK ORDER DATA

n

S
.3
39
28
20
22
38
3l

8
26
21
17
2%

2.

23
40
27
30
33

NORMDATA NDRMVAR T
0,9310 0,9310 0,720 =1,3]20
047650 0.7650 0,7450 =1,1054
- 0a7570__0,7570  0,7570__=0.9612
0.9700 0,9700 0.7590 =~0.,8447
0,8800 0,8800 0,7650 =0,7439
0,8390 0.8390 0,7660 =0.6533
08510 0,8510 067690 =0,5697
09330 0,9330 00,7720 <=0,49]1
0,08910 0.0910 0.7730_=0.4163 __ .
0.7720 0.7720 04,7850 =0,3443
08690 00,8690 0.7880 ~0.274¢
0.8500 0,8500 0.7940 =0,2059
0.8320 0.,8320 0.8010 <=0.1386
0.,8630 0.8630 0.8150 =0,07)9
047450.. _0,7450 0.8200 =0.0055 __ .. _.
0,8570 0,8570 0,8290 0,0608
0,9960 0.9960 0.8320 0s1274
0,8770 0.8770 0,8330 0.1946
048910 0,8910 0,8380 0,2625
09050 0.9050 0,8390 0.3315

-23_ __.
26

el
22

a5
26
F44
28

—_—— .29

30
31
32
33
3¢

- ...-.35

RANK  ORDER DATA  NORMDATA
1 0.7210 0,72)0
9 0.7730 0.,7730

10 _0.7850... 0.7850
7 0.7690 0.7690
1e 0,8150 0.8150
26 0.8600 0,8600
18 048330 048330
L) 0.7590 0,7590
-3 0292130 ... 0.9130
13 0.8010 0,8010
15 0,8200 0.,8200
16 0.8290 0.8290
19 0.8380 0.8380
6 0,7660 0.7660
I ¢ 027940. 0.7940
36 0.9150 0.9150
11 0,7880 0.7880
3 0.9110 0.9110
29 0.,88)0 0.88)0
32 049030 0.9030

36
37
38
39
40

10 =

NORMVAR

0,8500
0.8510
085792
0.8600
0,8630
0.86%90
0.8770
0,8800
. 0408810
0.8910
0.8910
0.9030
0,9050
0.9110
0.9130.
0,9150
0.9310
0.9330
0,9700
0.9960

0. PART

T

0.,40]19
0.4740
0e5480 .
0.6245
0,7038
0.7864
0,8729
0.,9640
10605 .
11636
142745
143950
145276
1,675%
l.8637
2,0398
2.2766
2.5772
29955
3.7013

CARD

CARD

PAGE
POINT

SEQUENCE

1
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EXTREMNE=-VALUE

STATISTI1CS

SAMPLE CASE OF CARQ INPUT OATA ee= UN=NORMAL1ZEO

SEGMENT START TIME O 0, 00 0. 0.

OPT10ON COQES 1 11 1 0 0

MAX]IMUM L1KEL1HODO ESTIMATES! FIRST ASYMPTQTE

MODAL PARAMETER 08120 ® 0,0097
SLOPE PARAMETER 17.2736 & 2,.0922
MOMENT
L1MIT "ESTIMATE

VARIANCE~CDVAR]ANCE MATRICES 0938790+04

=0 .664650=02

CONVERGENCE CODEs NO, OF 1TERATIONS

ANA

NUMBER OF EXTREMES 40

THIRD

0.,8192
0.2453
0.2242
120938

=0,664650=02
0.437730 01

EVALUATION OF MAXIMUM L1KEL1HODD ESTIMATE RESULTS

F1RST ASYMPTOTE

T YALUE MIN MAX
2400 0.6961 0,6821 0.7104
=1,50 0.7252 0.713% 0,7369
=1.00 0,754]) 0,7642 0.70641
=0,50 0,7831 0,7739 0.7922

0.0 0.8120 0.8023 0,8217
0.50 0.8410 0.8296 0.8523
1,00 0,8699 0.8562 0.883%
1.50 0,8989 0.8824 0.9153
2,00 0.9278 0.9083 0.9473
2450 0,9568 0,9341 0.9794
3,00 0.,9857 0.9598 1.0116
3,50 1.0147 0.9858 1.0438
4,00 1.0436 1.0111 1.0761
4,50 1.0725 1.0366 1.1085%
$.00 1.1015 l.0622 1.1408
$.50 1.1304 1,0877 1.1732
6,00 1,1594 1.1132 1,2056
6,50 1,18823 1.1387 1.2379
7.00 1,217 1.1642 1.27013
7.50 1,2462 1.1897 1.3027
8,00 1,2752 1.2152 1.3351
6,40 1.,1823 141334 1,2312

OHSERVED PEAK 1.1800 1IN 120.0 SEC

THIRD ASYMPTQTE

VALUVE

046638
0.7094
0.7502
0,7866
0.8192
008483
0.8744
0.8976
0.97184
0.9370
049537
0.9685
0.9018
0.9937
1.0043
1.,0138
1,022
1.0299
1.0366
1.0427
140481
1.0284

LTS

MIN

0.6496
0.6977
0.7402
0.7775
0.8095
0.8370
048607
0.,8812
0.8989
0.914s
029278
0.9393
09493
0+9578
0.9650
0.9711
049761
0.9803
0.9836
0+9862
0.9882
09795

ASYMPTOTE

0.0110
0.1081
0.1200
0.4642

MAX

0.6780
Ue7211
0.7601
0.7958
0.8289
0.8597
0.8880
0.9141
049379
09597
09795
0.9977
140143
1.0296
1.0836
140565
1.0684
10795
10897
1.0992
1.1081
1.0773

LYS1S

0,120350-023
0,48750D=03
0.546400=02

17.

RE TURN
PERIOD:SEC

2,001E=01
24023E=01]
2¢1641E=01]
2,4T6E=0]
3.164E=0)
$,398E=0])
6.498E=01
1.000€ 00
1.580E 00
2,538E 00
4,118E 00
6,T24E 00
1.102E 01
1.810E 0}
2.,9T78E 01
4,904€ 0]
8.079E 01}
1.331€ 02
2.194E 02
3.617E 02
5.963E 02
1.200E 02

ESTIMATES BASED ON QATA FROM 8,0 SEC

PAGE 2
10 = [ Y PART 0. POINT 0.
SEQUENCE [
AVG = 0.6180 RMS = 041120
CORRELATION COEFFICIENTS
1=2 0442689
1=3 041493
223 099796
0,487500-0) 0546400=0)
0.108360=01 0.12470D=01
04124700-01 0e144080=01

STATISTICS = <0.05
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SEGMENT START T1ME

EXTREME~VALVE STaTISTICS

ANALYSIS

SAMPLE CASE OF CARD INPUT DATA ==« NORMALIZED 1D = le PART
0o 0, 0o 0, 0, NUMBER OF EXTREMES 40
RANK ORDER DATA  NORMDATA NORMVAR 7 B RANK _ ORDER__ DATA NORMDATA NORMVAR 7
k1 0.9310 2,7946 0,9196 =1,3120 . - 21 | 1 0,7210 , 0,9196 _ 2.0714 0,4019
5 047650 1,3125 1,1339 =1,1054 22 9 0,7730 1,3839 2,0804 00,4740
3 . 0a7ST70___l.2411 _1.2411 =0.9612 23 10 0.7850  1.,4911 . _2,1339 . 0.5480. .
39 0.9700 3,1429 1,2589 =0.,8447 24 7 0,76%90 1.3482 2.1607 0,624%
28  0,8800 2,3393 1:3125 «0,7439 25. .. 14 0.8150 .. 1.7589 . 2.,1875 0,708
20 0.8390 1,9732 143214 =0,6533 26 24 048600 2.1607 2.2411 0.7864
22 0.8510 2.0804 1:3482 =0,5697. .27 _ 18 0.8330 1.9196 2.3125 0.8729
38  0.93%0 2,8125 1,3750 =0.4911 28 L 0.7590 142589 2.3393 0,9640
.—-31_ 0.8910 2,43]5 1,3839 -0.4163 == 2 L 6339 _2,3482__1,0608
8 0,7720 1,37150 1.4911 =0.3443 30 13 0,8010 1,6339 2,4375 1,1636
26  0.8690 242411 1.5179 =0.2744 — 3 .15 0.8200 1.8036 2.,4375 1.2745
21 0.,8500 2,0714 1,5714 =0,2059 32 16 0,8290 1.8839 2,5446 143950
17 0.,8320 1.,9107 1:6339 =0,1386 33 L19 _.048380. _1.9643 2,5625 1.5276
25 0.8630 2,1875 1.7589 =0,0719 34 6 0.7660 103214 2, 6161 1.6755
2.4 __ 1.8036 «0,005% 38 12 0.7960 _1.57)4 2.6339 . 1.8437
23 0.8570 2,133 1.8839 0.0608 36 36 0.,9150 2.,6518 2,6518 2.0398
40 0.9960 3,37%0 1.9107. 0.1274. ). 11 0478080, _ 145179 _2.,7946 2,2764
27  0.87TT0 2.,3125 1.,9196 0.1946 38 3 09110 2,6]161 2.8125% 2,57712
30 068910 2,4375 | 1.9643 | 0.2625 9 .29 . 040810, 23482 | 3.1429 2,995
33 0.9050 2,5625 1.9732 043315 40 32 0.9030 25446  3,3750 33,7013

14,

PAGE 3
POINT 2.
SEQUENCE 24
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EXTREME=-VALUE STATISTICS ANALYSIS' PAGE &
SAMPLE CASE OF CARD INPUT DATA === NORMALIZED 10= 1. PART 14, POINT 2.
SEGMENT START TIME 0. 0, 0s 0. O, NUMBER OF EXTREMES 40 SEQUENCE 2.
OPTION CODES 1 1 0 1 0 0 0 0 0 AVE ®  0,6180 ARNS = 0,1120
MAXIMUM LIKELIHOOD ESTIMATES: FIRST. ASYMPTOTE THIRD ASYMPTOTE . __._ CORRELATION COEFFICIENTS
MODAL PARAMETER 147325 & 0,0865 1,796¢ ® 0,0980 1e2 0444870
SLOPE PARAMETER 1:9346 ® 0,2343 0.9526 ® 0.2718 1-3 0,41493
MOMENT 0.2242 * 0,1200 2-3 0.97591
LIMIT ESTIMATE 4,2482 * 1,2119
VARIANCE=COVARIANCE HATRICES 04768400-02  =0,664650=02 0095944D=02 0411944D=01 0.48785D~02
=0466465D=02 0.,54909D=01 0.11944D=01 0.738500~01, 0.31834D=01
0.48785D=02 0.31834D=01 0s14408D=01
_ CONVERGENCE CODE» NG OF ITERATIONS _ _ ... . Qu_ .. .. _3e . Qe ._._d2c .
EVALUATION OF MAXIMUM LIKELIHQODO ESTIMATE RESULTS
FIAST ASYNPTOTE THIRD ASYWPTOTE RETURN
T VALVE _ _ _MIN..... _MAK.___ . VALVE __ MIN ..MAX. . PERIOD)SEC
«2.00 0.6987 0.5720 0.8256 0.4089 002821 0.5356 2.001E=01
al,50 0,9571 0,8526 1.0619 0.8161 0.7113 0.9208 2,023E=01
=1,00 1.2158 1.1270 1.3042 1.1801 1,0915 1.2687 2.141E=01
©0,50 1.4740 1,3922 1,558 1.5055 1.4237 1.5872 2.4T6E=01
- 0.0 147325 . 1.6460  1,8190.. _ _1.7966 ___1.7098._ . _1.8829 . _3,164E=01_
0.50 1.9909 1.8897  2,0921 2,0564 1,9552 241576 4,398€«01
1.00 242694 2.12711 2.,3716 2.2089  2,1666  2.4112 6.498E=01
1,50 2.5078  2,3607 2.6549 2.4967 2.34096  2,6437 1,000 00
2.00 2,7662  2.5923  2,9402 2.6024 2.5085 248564 1,560 00
2450 3.02¢7 2.8226 13,2268 248485 2.6454 3.0506 2.538E 00
3.00 3,2031 ... 23,0520 03 __ ._2.9910 247658 . _3.2281 . _4,118E 00
3,50 3,516 3.2810 3,8022 3.1297 2.8690 3.3903 6,T26E 00
4,00 3,8000 3.5095  4,0906 3.2683  2,9578  3.5388 1,102E 01
4,50 4.0585 3,7378 &,3792 3,3583 3.0337 3,6750 1.810€ 01
$e00 4,3169 3,9659 . 4.6680 3.449) 3.0981 3.8002 . 2,978€. 01
5,50 84,5758 ©  4,1938  4,9569 3.5339 3.1523 3.9155 4,906E 01
- 6,00 4,8338.__ 4,4 e 3,6097 _3,1975 __ &,021 £ 01
6,50 5,0923 4,6494  5,5352 3.6774 3,2345  4,1203 1.331E 02
1.00 5.3507 4,8770 5.8244 3.7379_  3.2662  4,2116. 2,194E. 02
7.50 5,6092 $,1006  6,1137 3.7920 3,2875  4.2966 3.61TE 02
8,00 $,8676  5.3321 . .6.4031 3.8404 3,3069 403759 5,963E_02
6.40 5,0387 4,6022  5,4753 3,660 3.2274 441005 1.200€ 02
" OBSERVED PEAK 5,0179 IN 120.0 SEC ESTINATES BASED ON DATA FROM 8.0 SEC STATISTICS = =0,05 3,17
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EXTREME=VALUE STATISTICS ANALYSIS

IOPT(1) POINTS TO DATA SOURCE

= 1 CARD InPUT

a 2 0ISK FILE

= 3 TAPE
I0PT (2) SPECIFIES PRINT 1ls PLOT 29 BOTH 0
IOPT(3)=0 FUR NORMALIZATION BY AVGeRMS =] FOR ND ADJUSTMENT
IOPT(4)= NUMBER OF SOLUTIONS PER INPUT SET
I0PT(5) = SPECIFIED NPK If NOT = 0
JOPT(6) = PLOT SCALE SPECIFICATION

s 0 DEFAULY SCALES

= )} COMPUTE SCALES

OO0

VAR({1)=]D VAR({11l) = PEAK
2 =PART 12 = VMIN PLOT SCALE
3 =POINT 13 = YMAX PLOT SCALE
& sSTART TIME.DAY 14 = YINC PLOT SCALE
S =HOUR 15 = SIGMA LEVEL
6 sM]IN 16 =
T =SEC 17 =
8 =MSEC 18 =
9 =SAMPLE RATE PER SEC - 19 =
10 =PEAK TIME (SEC) 20 = SEQUENCE

DIMENSION PK({300)
COMMON /TITLE/ TI1T{20)sVAR{20)
COMMON /OPTION/ 1OPT(10)
CALL ERRSET(207+2569=1s1)
CALL ERRSET(208+2564=]191)
CALL ERRSET(209¢2569=101)
CALL ERRSET(2524+2569=111)
CALL ERRSET(25342564=1s1)
CALL ERRSET (26192%69=]191)
CALL ERRSET(263+25649=1s1)
10 CALL CARD
20 CONTINUE
IF(IOPT (1) 4EQel) CALL READC (Ny»AVGIRMS,PK)
IF(IOPT(1),EQGe2) CALL READB(N+AVGIRMS»PK)
IF(IOPT(1)+EQe3) CALL READD(NsAVGIRMSIPK)
CALL EVSTAT(NsAVGIRMS »PK)
IOPT(4)SIOPT(4) =]
IF({IOPT(4),6T.0) GO TO 20
IF(IOPT(1).EQe3) REWIND 11
60 TO 10
END
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SUBROUTINE CARD
COMMON /TITLE/ TIT(20)VvAR(20D)
COMMON /0PTION/ IOPT{10)
DATA 10/0/eN/5/
DATA IPLOT/0/
IF(ID+EQ.0) CALL LISTER(S)
I0s[De]
READ(N+1+END=100) TIT.IOPT
1 FORMAT (20A4 /1015)
VAR(20)=ID
IFRIOPTR2¢,NEe]l +ANDs IPLOT.EQ.0< IPLOTH]
RETURN
< CLOSE EVPLOT FROM CARD END
100 IFSIPLOT,EQ.0< STOP
CALL PAGEL (8)
END

SUBROUTINE LISTER(K)
REAL®S C(20)
DATA KARD/1/
REWIND S
10 WRITE(Kell)
11 FORMAT (1H194 (/) 91X043(1H®) 9121 CARD INPUT +43(1H%))
WRITE(K»12)
12 FORMAT(/+5H CARD9T20910(1H1) ¢10(1H2) 910(1HI) 210(1H4) 910(1HS)¢10(1N
®6) 010(1HT) ¢ 1HBs/eTH COLUMN9T1148(10H1234567890) ¢S5X94HCARD/)
00 30 J=m].45
20 READ(S5¢21+END=40) C
21 FORMAT(20A4)
WRITE (K922) Ce+KARD
22 FORMAT (10X .20A4e18)
KARD=KARDe]
30 CONTINUE
WRITE(Ke+12)
G0 Y0 10
40 REWIND S
WRITE(Ks12)
RETURN
END
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SUBROUTINE READC(NyAVGyRMS,PK)
DIMENSION PK(300)
DIMENSION PKI(300)
COMMON /TITLE/Z TIT(20)sVAR(20)
COMMON /0PTION/ IOPT{)0)
NAMELIST ZINPUT/ VAR /DATA/ PK]
READ(5s1) NoelDsNPRTINPTIAVGeRMS
1 FORMAT(41592E10,%)
VAR(15})=],
VAR(1)=]D
VAR (2) =NPRT
VAR(J3) NPT
READ (S INPUT)
READ(5sDATA)
00 10 I=leN
PK(1)=PKI(I)
10 CONTINUE
IF(IOPT(3),E£Q.0) VAR(]11)=(VAR(11)=AVG)/RMS
RETURN
END

SUBROUTINE ORDER(T)
REAL®8 X
DIMENSION T(300)
COMMON /EVALX/ X{300) oNPK
COMMON /0RD/ K(300)
NsNPK
TMIN=] ,D5%0
DO 10 I=xleN
10 K(])=0
DO 30 I=lsN
00 20 JU=1sN
IF(K(J)) 20s11420
11 IF(T(J)=TMIN} 12412420
12 kK=ay
TMIN=T (V)
20 CONTINUE
K(KK)=]
TMIN=],.D50
30 CONTINUE
DO 40 I=1,N
X{K(I))=DBLE(T(I))
40 CONTINUE
RETURN ~
END
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SUBROUTINE EVSTAT (N s AVGs RMSy PK )

N = NO. OF PEAKS
AVG = TIME AVERAGED DISTORTION
RMS = ROQT=MEAN=SQUARE OF DISTORTION
PK = UNORDERED ARRAY OF DISTORTION PEAKS

REAL®8 XiS1eS3sV1V3

DIMENSION PK{N)sT{300)+S1(10)9sS3(10)»V]1(396)9sV3(396)
COMMON ZEVALX/ X(300) yNPK

COMMON /TITLEZ TIT(20)VAR(20)

COMMON /OPTION/ IOPT(10)

NPK=N

IF(I0OPT(3)) 20010020

DO 15 I=1,N

T(I)=(PK(I)=AVG) /RMS

GO TO 30

00 25 Is=].N

T(I)=wPK(I)

CONT INUE

CALL ORDER(T)

S1(1)=X(NPK/3)
S1(2)=(=ALOG(ALOG((1e+NPK)/NPK)) ¢ALOG(ALOG(]+oNPK)))Z(X{NPK)=X(1))
CALL EXTVAL(2sS1lsV])

S3{1)=S81(1)

S3(6)=2,8X({NPK)
S3(3)=]1,00/(S1(2)#(S3(4)=S3(1)))
S3(2)=53(3)%S3(s)

CALL EXTVAL(3:S34»vI)
VAR(16)=V3(1+5)/DSART(VI(]1:4)9V3(2+5))
VAR(17)3V3(1+6)/DSQRT(V3I(106)8V3(3:6))
VAR(18)a3V3(2+6) /0SART (V3I(2+5)8V3(3¢6))
IF(IOPT(2)+EQ¢2) GO TO 40

CALL PRNT(S19S3sV1sVIJAVGIRMSsPKsT)
IF{IOPT(2).EQ.l) GO TO S0
IFRIOPTR6<.EQel< CALL SCALE

CALL EVPLOT(S19S3:AVGIRMSsV]1eVI)
CONTINUE

RETURN

END

SUBROUTINE EXTVAL(XKQDESeV)
REAL®8 SeVieYeX

DIMENSION S{10)sV(396},Y(300)
COMMON ZEVALX/ X(300) sNPK

DO 10 I=]+NPK

Y(1)=0,

CALL NLLSQ(KODESsY)

CALL VARIAN(KODE»S»V)

RETURN

END
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OO0 OO

10
100

110
120

130

140
150

160

SUBROUTINE NLLSQ(KODE,GUESS,Y)
IMPLICIT REAL®*8 (A=H»0=2)
DIMENSION X(300)oY(300)9GUESS(10)+THETA(L10)Q(10)90(10)sFMATI(20»10
*)
DATA -I1T/7200/:TOL/10=8/+ATOL/1D=10/915W270/+1SW3/70/
DATA KSYM/0/
ROUTINE NORMALLY FITS YsF(X)s X USED NOW AS POINTER ONLYy Ym0
NP NORMALLY NO, OF PARAMETERS NS NOe OF SAMPLES
GUESS(10)a0,
GUESS(10) = CONVERGENCE CODE
= 0 OK =] MAXIMUM IT 82 POSITIVE DERIVATIVE
®3 TOO MANY CUTBACKS
NOBS=KODE
NP=KODE
ICHK=0
ITG#0
DO 1 I=1,.,KODE
X(I)=]
NO=0
I11=0
NSsKODE
CALL DATSET(GUESS,KODE)
QZERO=0,0
D0 S I=1,10
THETA (I)=GUESS(I)
CONTINUE
CONTINVE
ITNsl
DO 1310 I=14NS
XX=X{1)
F=EVAL (XX +GUESS9INP+0)
QZERONQZEROLRYSI <c=Fecha?
QHALF=0,0
KOUNT=0
QONE=0,0
QVYMIN=0,0
DO 130 J=]lsNP
D(JY)=0,0
Q(J) = 0,0
D0 130 K=]l,NP
FMAT(JeK)=0,0
00 150 I=1,NP
DO 150 JsI,NP
D0 140 K=]1,NS
XX=X (K)
FMAT (1o J)SFMAT (I oJ) ¢EVAL (XXsGUESSeNP 1) ®EVAL (XX9BUESSeNP s y)
FMAT (Jol) = FMAT(]I+J)
00 170 J=1l4NP
DO 160 1=]1:NS
Xx=X({1)
FEEVAL (XX yGUESSsNP20)
Q(JISQIJ) e (Y(I)=F)®EVAL (XX s GUESSsNP s J)
CONTINUE
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170
210

200

221

230

240
227

270

280
224
290

300
310

320

1111
330
340
350

370

CONTINUE

DO 210 J=lNP
FMAT(JeNP+1)=Q (V)
102=4

1D2=5

CALL CHOLES(FMAToNP+1910910202)

D0 200 J=]ly¢NP
O{(J)SFMAT(JeNPe])

DERIV = 0,0

D0 221 J=]4NP

DER1V s DERIV=D{J)*Q(J)

IF (DERIV .GE. 0,0) GO TO 222
00 230 IsleNP
THETA{I)=GUESS(1)01(1)

DO 240 I=]l¢NS

XX=X (1)

FSEVAL (XXe THETA NP 0)
QONE=QONE + (Y (1) =F)aa2
CONTINUE

QVMIN=20,0
DENOM=QONE=QZERO~DERIY

IF (DENOM JLE. 0.0) GO TO 223
VMIN B «0,S5%DERIV/0ENQM
IF{VMIN,GEs1ls0) GO TO 223
IF (VMINeLTe0sl) VMIN=O,1

DO 270 I=1lyNP

THETA(I) = GUESS(]l)eVMIN®O(])
DO 280 I=]1¢NS

XX=X(1)

FE=EVAL (XXs THETA¢NP ¢0)
QVMINSQVMINS (Y(L) =F ) ®#a2
CONTINUE

IF (QVMIN 6T, QZERQ®ATOL) GO TO 225

CONTINUE

DO 290 I=].NP

GUESS (1)=GUESS (1) +VMIN®D(I)
IF (QVMINLLT.ATOL) GO TO 330

IF (DABS(({QVMIN~QZERO) /QVMIN) .LE.TOL) GO TO 1111

IF (ITNeIT) 32003104330
CONTINUE -
GUESS(10)=100

LulLe}

GO TO 330

QZERO=QVMIN

ITN=ITNe1

GO TO 120

CONTINUE

IF (ISW3~=]1) 370:340,370
IF (II) 370¢350,370
NS=NOBS

11=}

ITN=]

GO YO 120

CONTINUE
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IF (KOUNT.GT+5) GUESS(10) =300
GUESS(9)=ITN
IF (KODE+EQe2) RETURN
IF (KODE«EQ+3) RETURN
G0 TO 1

600 CONTINUE

222 CONTINUE
BUESS (10) 2200
RETURN

223 VMIN = 1,0
QVMIN = QONE
60 TO 224

225 IF (QONE ,LT. QZERO) 60 TO 223

KOUNTEKQUNT+1

D0 226 J=1sNP
226 DLJ) = VMIN®D{(J)

QONE = QVMIN

DER]IVsDERIV®VMIN

60 JO 227

END

FUNCTION EVAL(XsCoNeK)
IMPLICIT REAL®8 (A~Hv0=2)
DIMENSION C®l0«<
COMMON ZEVALX/ Y (300) oNPK
IF{(KODE.EQ,3) GO TO 100
IF(V,NE,C(1))G0 TO 10
IF(ACNE.C(2))60 TO 10
GO TO 20

10 CONTINUE
¥=C(1)
AxC(2)
S0=ENPK
S1=20,
S2=0,
$3=0.
Sa=p,
S5=0,
D0 15 I=)yNPK
EaY(l)=V
PHIaDEXP (=A®E)
S1laSle],D0=-PHI
§$23S2¢E%(]1,D0=PHI)
S3aS3+PHI
S4aS4ePHISE
SS=SSePHISEN

15 CONTINUE
Tl=peS]
T2sS0/A =S2
Tllz=S3tA0ep
T12xS]1+A0S54
T225=S0/A892-55

20 KK=x
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22

30
31

32

40
&2

100

110

115

GO TO (30+40) K
GO TO (21+22) ¢KK
EVALET]

RETURN

EVAL=T2

RETURN

GO TO (31+32) KK
EVAL=T]]

RETURN

EVAL=T]2

RETURN

GO TO (32942) oKX
EVAL=T22

RETURN

CONTINUE
IF(V.NE,C(1)) GO TO 1)0
IF(ANE.C(2)) GO TO 110
IF(BeNEL,C(3)) GO T0 110
GO 10 120
CONTINUE

v=Citl)

E=C(2)

AsC (2}

B8=C (3)

XK=)l/8

E=A®XK

SO=NPK

Sl=0,

S2s=0,

S3=0,

S4=0,

$S5=(,

S6=0,

ST=),

S8=0,

S9=0,

S10=0,

00 115 1I=)yNPK
PHIa(E=Y(]))/ (E~V)
PHIK=PHI®eXK
PHIL=SDLOG(PHI)
S1=S]lePHIK
S2s52+1D0/PHI
S3aS3ePHIKOPH]
S4sSéePHIL
S5=S5ePHIK®PHI|
S68SEPHIK/PHI
S7=STelDO/PHI®E2
S8=28S8+PHIK/PHI®#2
SOuSTePHIL*PHIK/PHI
S103S10ePHIK®PH]IL®®2
CONTINUE
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120

121
122
143

130
131

132
133

140
142

143

150
153

EVeE=Y

Ti=(S0=S1l)eXK/EY .

T2u (= XK®#S0¢ (XK=]) #S2¢XK#S]=XK®S6) /EV
TI=SO/XK¢Sk=SS
Tile(SO0=(XK+1)®#S]l)exXK/EVee2

Ti2= (=S0=-XK®S6+ (XK¢]1) #5]) eXK/EVe®2
T138(S0=S1=XK®*35) /EV

T22u {S0=(XK=1) /XK#STeXK#2056=(XKe]l)®S]l= (XK=]1)®SB) *XK/EVee?
T23n (=S0+S2=-XK®*SP+ XK*S$5=S5+S1)7EV
T3 (=S XK##2=XK#0405]10)
T33aT33+XKae3826T)

T3I3aT33 + E0e28XKNE28T2D + 2, 8ESXKON20T2 ¢ 2,8E0XK®830T23
TZ:I - xK..a.TZa - E.xK..Z.TZa - XK..Z.TZ
T22= XK#®82eT22

TIsaTIoxK0e2

TI=TI = E#XKeT2

T2uXK®T2

Ti13 8 = XKe020T]3 = EeXxeT12

T12 = XK*Tl2

KK=X

GO T0(130+140+150)¢K

GO T0(121+122¢123)¢KK

EVAL=T]

RETURN

EVAL=TZ2

RETURN

EVAL=T3

RETURN

GO TO(131+132+133) KK

EVAL=T]11

RETURN

EVAL=T]Z2

RETURN

EVALsTI]

RETURN

GO TO(132+1429143) KK

EVAL=T22

RETURN

EVAL=T23

RETURN

GO TO (13391439153) KK

EVAL=T33

RETURN

ENTRY DATSET{(C+KODE)

DATSET=0

RETURN

END
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37
a7

57
7

49
60

101

SUBROUTINE CHOLES{AoNoyNVe1D19102,HATSYM)
REAL®8 A(ID1+ID2)+sSUMTEMP
CUuT=0,

MaNe+NV

NARDaN+1

IF(A(19]1) NE«D0sD) GO YO &7
DO 37 J=m2yN
IF(A(Jo1)EQ.0,0) GO TO 37
IFLIP=Y

G0 T0 27

CONTINUE

GO TO 5432]

D0 ST K=loM
TEMPmA(IFLIPIK)
ACIFLIPsK)=mA (19K}

All +K)®RTEMP

CONTINUE

DO 2 Js2¢M
Allod)=A(10J)ZA(L0))

CONT INUE

DO & I=29N

DO 7 Jsm2eM

IF (MATSYM,EQ.0)GO0 TO 49
IF(I=J)69¢68967
IF(J.GT.1)G0 TO &9

KxJe]

SuUM=0,0

00 3 IR=1l4K
SUMaSUM+A (I IJR)®ALIR )
CONTINUE

0=A(IvJ)

A(IoJ)mA(IoJ)=SUM

IF (MATSYM.NE.2) GO TO 7
D=A(I+J)/0

FORMAT (*0SINGULAR MATRIXe I = 0,12)
IF (D«GT.CUT) GO TO 7

DO 88 KRK=]1sN

A(KRKyJ) =0,0

DO 89 KRK=]l¢M

A(JsKRK) =0,0
A(JoJ)m=ABS (D)

60 TO0 7

Knl«]

SUMl0.0

00 & IR=],K
SUMBSUMeA(I0IR)®A (IR Y)
CONTINUE

IF(A(I¢])4EQ.0,0) GO TO 54321
A(IoJIS(A(L0oJ)=SUMI/ZA(I])
GO TO 7
AlToJd)BA(Jr ) *A (U J)
CONTINUE
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51
52

54321
12345

30

40

S0

60

70

8o
90

CONTINUE

DO 52 NPROBENARD M

00 S2 K=2yN

I=sNeleK

SUM=0,0

LLsIe]

DO S1 IRsLLeN
SUMSSUMeA (I+IR) *A(IR'NPROB)
CONTINUE
A(IsNPROB)=A(IyNPROB)=SUM
CONTINUE

GO TO 12345

NE=]

RETURN

END

SUBROUTINE VARIAN(KQDESsV)
IMPLICIT REAL®*Z (A=He0=Z}
DIMENSION S(10)eV(306)9A(396)3AS(396)
TOL=1.D0
N=KQDE
Mu2eN
DO 40 I=]l.N
KsIeN
=]
DO 30 J=m]),N
A(ToJ)3=EVAL (XeSINeJ)
A(JeK)=0,
A{IsK)=]1,D0
DO SO I=]l.N
DO S0 J=]l M
AS(IeJd)=A(l0J)
CALL CHOLES{AsN9sN93I 9592}
DO 60 I=]oN
D0 60 J=]1)M
VileJ)SA(]sJ)
D0 70 I=]leN
Jeleb
Ks]eN
S(J)=TOL*DSQART (V(IsK))
IF (KODE.EQ+s2) RETURN
SOLVE FOR LIMIT VARIANCE FOR KOD§'3
EP=aS(3)/S(2)
AS(292)mS(I)0020(AS(2+2)=2,%EP®AS(213) ¢EP##20AS(3,3))
AS(2+3)=5(3)#(AS(203)«EP®AS(303))
AS(1e2)=S ()R (AS(1e2)=EP®AS(1,3))
AS(2e1)=AS(ls2)
AS(392)mAS(203)
DO 90 I=leN
Ks]IeN
D0 80 U=l,N
AS(JeK) =0,
AS(IeK)=]1,D0
CALL CHOLES(ASsNoN9239502)
S(4)=S(2)/5(3)
S(8)=TQOL#*DSQRT (AS(2¢5))
RETURN
END
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SUBROUTINE PRNT(S1eS34V1eVIsAVGIRMSsPKsT)
REAL®8 S519539V1sV3sX
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DIMENSION S1(10)+S3(10)e V1(3e6)e VI(3e6)9 PK(I00)s T(300)

COMMON /EVALX/ X(300) ¢NPK
COMMON /TITLE/ TIT(20)eVAR(20)
COMMON /0PTION/ IOPT(10}
COMMON /0RD /7 XORD(300)

COMMON /MISC/ RP(300)+TP(300)
DATA NPAG/O/esNLIN/O/N/S/
NPK2=NPK/2

NLIN=0

FORMAT (1H]1+20X¢'E X TREME =V ALUE STATISTICS
®ANALY ST S'T122¢"PAGE *9]3¢/71H0+20A4910Xe*I0 =0 4F0e095Xs

®PART* sF6,095X0s "POINT*sF8,04/)

2 FORMAT(1H o *SEGMENT START TIME ¢9F4.0+3F3.00F4,00T118y 'SEQUENCE *

10
15

16

17
20

30

31

®F4,097699 *NUMBER OF EXTREMES®9sI4+/)

D0 10 I=lyNPK
TP(I)==ALOG(ALOG( (] ,*NPK)/FLOAT(I)))

CONTINUE

LPP=uS0

DO 30 I=l,NPK2

IF (NLIN/LPP®LPP«NENLIN) GO TO 20

NPAGENPAG+]

WRITE(N9sl) NPAGITITo(VAR(IK) sK=]93)

WRITE(N+2) (VAR(K) sXKm448) ¢ VAR (20) sNPK
WRITE(Ns16)

FORMAT (JHO+'RANK ORDER ODATA NORMDATA NORMVAR
L Y61+ *RANK ORDER DATA NORMDATA NORMVAR
FORMAT(1H +1301T94F9:4sT6101391T04F9%,4)

CONTINVE

NLIN= NLINel

JulenPK/2

Ty
LAY )

WRITE(Ns17) IoXKQRO(I)sPKIIIoT(I) o X(I)oTP(I)oJeKOQRO(J) sPK(J) 9T (J)

oX(J) e TP (J)

CONTINUVE

NPAGENPAGe]

WRITE (Nsl) NPAGsTITo{(VAR(I)sIml,e3)
WRITE(Ne2) (VAR(I)oIm4498)9VAR(20) oNPK
WRITE(Ne31) IOPTsAVGIRMS

FORMAT (%0 OPTION CODES *9101I5+26X0'AVG 399F9,495Xe*RMS 31 ,F9.44//)

WRITE(N»32)

32 FORMAT ('OMAXIMUM LIKELINOQD ESTIMATES? FIRST ASYMPTOTE®*sT62y

®ITHIRD ASYMPTOTE'+T90+ *CORRELATION COEFFICIENTS?+/)

WRITE(N+33) S1(1)9S1(5)9S3(1)983(5)9VAR(]16)

33 FORMAT(1H +5X9s *MODAL PARAMETER'sT300FTe4s? ® *4FTo49TOOsFTods? » ¢

B sFT 4079540 1=295XeF8,5)
WRITE (Ns3s) S1(2)9S1(6)9S3(2)+5S3(6)sVAR(LT)

34 FORMAT(1IH 95X+ °SLOPE PARAMETER'sT30sFT7eés® & V9FTo4sT60sFTobe" » ¢

®oFT49T95411=3995X9F8,5)
WRITE (N9 35) S3(3)+S3(T)+VAR(]8)

35 FORMAT(1H +5Xo *MOMENTY 9 TGO9FTeb9? ® "9F7,40T795992=31,5X9F8:5)

36 FORMAT(1H +5Xo 'LIMIT ESTIMATE! 1 TSOsFB.6s? ® 4FT080/)

WRITE (Ns36) 53(4),53(8)
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37

30

WRITE(No3T) CCVI(TIod) sUmIe8) o (VI(ToK) 9Kmée6) 0ln]s2)

FORMAT (1H0+*VARIANCE=COVARIANCE MATRICES'92016+5¢10X93D16,5¢/1H »
#73002016,5910X93016,5)

WRITE(N+38) (V3I(39J) 9Juée6)

FORMAT(1H »70X+3D16,5)

WRITE (Ne39) S1(10)+51(9)953(10)+S3(9)

39 FORMAT(1HO,*CONVERGENCE CODEs NOo OF JTERATIONS'¢5X94F10.0)

41

42
50

51

WRITERNe41<
TOLMVAR®]15¢

FORMAT (/7/% EVALUATION OF MAXIMUM LIKELIHOOD ESTIMATE RESULTS!'/1M0,
®T200'FIRST ASYMPTOTE" 9y TS39*THIRD ASYMPTOTE®* o T8Lle'RETURN' 9/1H o

® T 2¢8Xe2(°VALUE MIN MAX?910X)sTT799 *PERIODISECr ¢/}
KNPK#VAR®G<O®VAR®SL0<

DO S0 Iwsl,22

XTHFLOATR]I=5¢</2

IFRI¢EQe22<XTH=ALOGRALOGEXNPK/ (XNPK=]1,)}))
XESEXPR=XT®#SNGLE¥SIBI<<<

XBH#%]l s ~XE</S3%3¢

XCHBRSING<=SIN]I << TOXE~SIN2<»XB/SIBI<

XANXT/S1%2<con
X1nDSQRTASINS< o #24RXARS | B6cc#02a2 0 XA®V]IN] s 4<<
X3=DSQRT((SI(S)OXE)R#2 ¢ (S3(6)2XB)#82 ¢ (SI(T)XC)Pe2
0 L2,"EXE*AB*VIN] 95<LAB*XCOVIB296<AXELXCPYIR]L 96¢ <<
Xsl=x1

XS3=X3

XFNS1Bl<bXT/S1N2<

XGHXF=XS1#TOL

XKH#XFAXS1TOL

XINXBOSIN2<LAXE*SIN] <

XJW#XI=XS1=TOL

XK#XI&XS1®TOL

XL#]le/%B] o =EXPR~EXPE=XT<<</VARSEIC

WRITE®N942< XToXFoXGoXHoX]I o XJoXKo XL

FORMAT(1H 2FB¢202X03F10+%¢3Xe3F10,494X91PEL10,3¢<
CONTINUE

XM¥EVARB] 1 <»XF</XS]

XN#BVARS®]1<=X]1</XS3

XO#NPK/VARRI<

WRITE®N:S51<VAR%]11<s VARBE)10<o X0 ¢ XMe XN
FORMAT (1H0» YOBSERVED PEAK'oFT4+2Xs"IN"sF6osle? SEC's10Xs'ESTIMATES
® BASEO ON DATA FROM?sFS5,1¢? SEC?eOXs'STATISTICS m?,2F7,2)
RETURN

END
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IDC
IDL

IDR

KRA
KTH

log

N

NOMENCLATURE
Local speed of sound
General distortion factor
Cumulative probability function
Probability density function
Filter cutoff (-3 db) frequency
Circumferential distortion factor
Fan stall margin ratio
Radial distortion factor
Fan distortion factor
Radial distortion factor
Circumferential distortion factor
Natural logarithm
Number of extremes
Number of zero crossings, Eq. (13)
Number of independent samples
Pressure
Normalized autocorrelation function
Inlet duct radius
Estimated standard deviation
Return period, Eq. (10)
Reduced variate, Eq. (6), or time

General probability variate

73

AEDC-TR-74-121



AEDC-TR-74-121

y General probability variate

a General asymptote parameter
J¢] General asymptote parameter
At Time interval

€ Limiting distortion level, a/

X Similarity parameter, Eq. (12)
v General asymptote modal parameter
o Standard deviation

i) Cumulative probability function
SUPERSCRIPT

A Estimate
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